
Case-Based Plan Recognition
Under Imperfect Observability

Swaroop S. Vattam1, and David W. Aha2

1NRC Postdoctoral Fellow; Naval Research Laboratory (Code 5514); Washington, DC; USA
 2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC; USA
{swaroop.vattam.ctr.in, david.aha}@nrl.navy.mil

Abstract. SET-PR is a novel case-based recognizer that is robust to three kinds
of input errors arising from imperfect observability, namely missing, mislabeled
and extraneous actions. We extend our previous work on SET-PR by empirical-
ly studying its efficacy on three plan recognition datasets. We found that in the
presence of higher input error rates, SET-PR significantly outperforms alterna-
tive approaches, which perform similarly to or outperform SET-PR in the pres-
ence of no input errors.

Keywords: Case-based reasoning, plan recognition, imperfect observability,
graph representation, plan matching

1 Introduction

A plan recognizer observes the actions executed by an actor and attempts to infer the
actor’s plan. A plan recognizer typically receives its input observations (of actions)
from a lower-level action recognition system that can be noisy. A sophisticated plan
recognizer therefore needs to relax the assumption of perfect observability and expect
at least three kinds of input errors: a mislabeled action occurs in an input when an
actor’s true action is recognized as some other action; a missing action occurs when a
true action is unrecognized (i.e., classified as a non-action); and an extraneous action
occurs when a non-action is classified as some valid action.

Single-Agent Error-Tolerant Plan Recognizer (SET-PR) is a novel case-based plan
recognizer that has shown promise in tolerating these kinds of input errors. We previ-
ously introduced SET-PR and highlighted its representation and reasoning techniques
(Vattam, Aha, & Floyd 2014). This paper extends our preliminary empirical study of
SET-PR, which was limited to just one dataset (the Blocks World domain) (Vattam,
Aha, & Floyd 2015). Here we conduct a more comprehensive empirical investigation
of SET-PR by (1) expanding the scope of the investigation to three datasets (Blocks
World, Linux, and Monroe), (2) adopting a wider range of plan-recognition perfor-
mance metrics, and (3) comparing the performance of SET-PR to baseline algorithms.

This paper is organized as follows. Section 2 describes related work on plan recog-
nition. Section 3 gives an overview of SET-PR including its novel plan representation

and retrieval mechanism. Section 4 presents our more comprehensive study of SET-
PR, including the hypotheses we address, data used, evaluation method, empirical
results, and their analysis. In this investigation, we found that SET-PR significantly
outperformed the baseline algorithms in the presence of higher levels of input error,
although the baselines performed similar to or outperformed SET-PR in the presence
of no input errors. We conclude and discuss future research plans in Section 5.

2 Related Research

Early work on plan recognition (e.g., Kautz & Allen, 1986) assumed that the observed
actor’s actions follow a hierarchical plan structure, requiring the plan recognizer to
infer plans and sub-plans at multiple abstraction levels. However, it assumed perfect
observability, which is unrealistic. Since then, a number of important probabilistic
(e.g., Charniak & Goldman, 1993; Bauer, 1994; van Beek, 1996) and statistical pars-
ing approaches (e.g., Pynadath & Wellman, 1995; Geib & Goldman, 2009) have been
proposed that address issues of uncertainty. They frame plan recognition as a problem
of probabilistic inference in a stochastic process that models the actor’s action execu-
tion. While this offers a general and coherent framework for modeling different
sources of uncertainty, they have not focused on problems due to imperfect observa-
bility. In contrast, activity recognition (Duong et al., 2005) algorithms, which apply
signal processing techniques to discretize sensor information into coherent actions,
have addressed imperfect observability issues. Bridging the gap between low-level,
often noisy activity models and higher-level plans remains a research challenge.

Recently Ramirez and Geffner (2010) proposed a novel approach to plan recogni-
tion by formulating it in terms of plan synthesis and solving it using off-the-shelf
planners. They extended their approach to perform plan recognition in POMDP set-
tings (Ramirez & Geffner 2011), which they claim can tolertae different kinds of
input errors. They demonstrated that it tolerates one kind of input error, namely miss-
ing actions (i.e., incomplete observations). However, like most plan recognition ap-
proaches theirs is “model-heavy”; they require accurate models of an actor’s possible
actions and how those actions interact to accomplish different goals. Engineering
these models is difficult and time consuming. Furthermore, these plan recognizers
perform poorly when confronted with novel situations and are brittle when the operat-
ing conditions deviate from model parameters.

SET-PR exemplifies case-based plan recognition (CBPR), a model-lite, lesser stud-
ied approach to plan recognition. Existing CBPR approaches (e.g., Cox & Kerkez,
2006; Tecuci &Porter, 2009) eschew generalized models and instead use plan librar-
ies that contain plan instances that can be gathered from experience. CBPR algorithms
can respond to novel inputs outside the scope of their plan library using plan adapta-
tion techniques. However, to our knowledge they have not been designed for imper-
fect observability, which is the unique focus of SET-PR.

Cox and Kerkez (2006) proposed a novel representation for storing and organizing
plans in a plan library, modeled as action-state pairs and abstract states, which counts
the number of instances of each type of generalized state predicate. SET-PR uses a

similar representation, but stores and processes plans in an action-sequence graph.
Our encoding was inspired by planning encoding graphs (Serina, 2010). These are
syntactically similar to our graphs but encode a planning problem while ours instead
encode a solution (i.e., a grounded plan).

Plan retrieval is an important step in CBPR algorithms and presents an efficiency
bottleneck. Our previous contribution presented an algorithm for speeding plan re-
trieval in SET-PR that uses plan projection and clustering (Maynord, Vattam, & Aha
2015). Sánchez-Ruiz and Ontañón (2014) use Least Common Subsumer Trees for the
same purpose, but they are not applicable to our representation.

3 SET-PR

3.1 Representation

SET-PR learns to recognize plans from a given plan library 𝐶 (i.e., a set of cases).
Each case is a tuple 𝑐 = (𝜋,𝑔), where 𝜋 is a known plan (the problem part), and 𝑔 is
its corresponding goal (the solution part).

3.1.1 Action state sequences. Each case’s plan 𝑐.𝜋 is modeled as an action state
sequence 𝕤 = 〈(𝒂𝟎, 𝒔𝟎), … , (𝒂𝒏, 𝒔𝒏)〉, where each action 𝒂𝒊 is a ground operator in the
planning domain, and 𝒔𝒊 is a ground state obtained by executing 𝒂𝒊 in 𝒔𝒊−𝟏, with the
caveat that 𝒔𝟎 is an initial state, 𝒂𝟎 is null, and 𝒔𝒏 is a goal state. An action 𝒂 in
(𝒂, 𝐬) ∈ 𝕤 is a ground literal 𝒑 = 𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛), where 𝑝 ∈ 𝑷 (a finite set of
predicate symbols), 𝑜𝑖 ∈ 𝑶 (a finite set of objects), and 𝑡𝑖 is an instance of 𝑜𝑖 (e.g.,
stack(block:A, block:B)). A state 𝒔 in (𝒂, 𝐬) ∈ 𝕤 is a set of ground literals (e.g.,
{on(block:A,block:B), on(block:B,substrate:TABLE)}).

Inputs to SET-PR consist of sequences (observed parts of a plan). An input to SET-
PR 𝕤𝒒𝒒𝒒𝒒𝒒 is also modeled as an action state sequence. However, unlike a plan, 𝒔𝟎 and
𝒔𝐧 in 𝕤𝒒𝒒𝒒𝒒𝒒 need not be initial and goal states, and 𝒂𝟎 need not be null.

Each case’s goal 𝑐.𝑔 is modeled as a task to be achieved (using the HTN vocabu-
lary) or as a state to be achieved depending on the domain. This reduces a goal to an
instance of a task (𝑐.𝑔 is an 𝒂) or a state (𝑐.𝑔 is a 𝒔) respectively. The representation
of a goal can be flexible because it is the solution part of a case and does not partici-
pate in matching during retrieval.

3.1.2 Action Sequence Graphs. An action sequence graph is a graphical representa-
tion of an action state sequence, which is propositional. This graph preserves the to-
pology of the sequence it encodes (including the order of the propositions and their
arguments). We mentioned that plans are modeled as action state sequences. SET-PR
does not store the propositional representation of an action state sequence 𝕤. Instead, 𝕤
is encoded as an action sequence graph ℇ𝕤 and stored in 𝑐.𝜋. Similarly an input se-
quence 𝕤𝒒𝒒𝒒𝒒𝒒 is also encoded as an action sequence graph ℇ𝕤𝒒𝒒𝒒𝒒𝒒and used in retriev-
al.

A labeled directed graph 𝐺 is a 3-tuple 𝐺 = (𝑉,𝐸, 𝜆), where 𝑉 is a set of vertices,
𝐸 ⊆ 𝑉 × 𝑉 is a set of edges, and 𝜆:𝑉 ∪ 𝐸 → 2𝐿 assigns labels to vertices and edges.
Here, an edge 𝑒 = [𝑣,𝑢] ∈ 𝐸 is directed from 𝑣 to 𝑢, where 𝑣 is the edge’s source

node and 𝑢 is the target node. Also, 𝐿 is a finite set of symbolic labels and 2𝐿 is a set
of all the multisets on 𝐿; this permits multiple non-unique labels for a node or edge.

The union 𝐺1 ∪ 𝐺2 of two graphs 𝐺1 = (𝑉1,𝐸1, 𝜆1) and 𝐺2 = (𝑉2,𝐸2, 𝜆2) is the graph
𝐺 = (𝑉,𝐸, 𝜆), where 𝑉 = 𝑉1 ∪ 𝑉2, 𝐸 = 𝐸1 ∪ 𝐸2, and

𝜆(𝑥) = �
𝜆1(𝑥), 𝑖𝑖 𝑥 ∈ (𝑉1 ∖ 𝑉2) ⋁ 𝑥 ∈ (𝐸1 ∖ 𝐸2)
𝜆2(𝑥), 𝑖𝑖 𝑥 ∈ (𝑉2 ∖ 𝑉1) ⋁ 𝑥 ∈ (𝐸2 ∖ 𝐸1)
𝜆1(𝑥) ∪ 𝜆2(𝑥), 𝑜𝑡ℎ𝑒𝑒𝑒𝑖𝑒𝑒

Definition: Given ground atom 𝒑 representing an action 𝒂 or a fact of state 𝒔 in the
𝑘𝑡ℎ action-state pair (𝒂, 𝒔)𝑘 ∈ 𝕤, a predicate encoding graph is a labeled directed
graph ℇ𝑝(𝒑) = �𝑉𝑝,𝐸𝑝 , 𝜆𝑝� where:

𝑉𝑝 = �
�𝐴𝑘𝑝 , 𝑜1, … , 𝑜𝑛� , if 𝒑 is an action

�𝑆𝑘𝑝 , 𝑜1, … , 𝑜𝑛� , if 𝒑 is a state fact

𝐸𝑝 =

⎩
⎨

⎧�𝐴𝑘𝑝 , 𝑜1��� �𝑜𝑖 , 𝑜𝑗�
𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛

 if 𝒑 is an action

�𝑆𝑘𝑝 , 𝑜1��� �𝑜𝑖 , 𝑜𝑗�
𝑖=1,𝑛−1;𝑗=𝑖+1,𝑛

 if 𝒑 is a state fact

𝜆𝑝 �𝐴𝑘𝑝� = �𝐴𝑘𝑝� ; 𝜆𝑝 �𝑆𝑘𝑝� = �𝑆𝑘𝑝� ; 𝜆𝑝(𝑜𝑖) = {𝑡𝑖} for 𝑖 = 1, … ,𝑛

𝜆𝑝 ��𝐴𝑘𝑝 , 𝑜1�� = �𝐴𝑘𝑝
0,1� ; 𝜆𝑝 ��𝑆𝑘𝑝 , 𝑜1�� = �𝑆𝑘𝑝

0,1� ;

∀�𝑜𝑖 , 𝑜𝑗� ∈ 𝐸𝑝, 𝜆𝑝��𝑜𝑖 , 𝑜𝑗�� = �
�𝐴𝑘𝑝

𝑖,𝑗� , if 𝒑 is an action

�𝑆𝑘𝑝
𝑖,𝑗� , if 𝒑 is a state fact

Interpretation: Suppose we have a ground literal 𝒑 = 𝑝(𝑜1: 𝑡1, … , 𝑜𝑛: 𝑡𝑛). De-
pending on whether 𝒑 represents an action or a state fact, the first node of the predi-
cate encoding graph ℇ𝑝(𝒑) is either 𝐴𝑘𝑝or 𝑆𝑘𝑝 (labeled �𝐴𝑘𝑝� or �𝑆𝑘𝑝�). Suppose it is
an action predicate. 𝐴𝑘𝑝 is then connected to the second node of this graph, the object

node 𝑜1 (labeled {𝑡1}), through the edge �𝐴𝑘𝑝 , 𝑜1� (labeled �𝐴𝑘𝑝
0,1�). Next, 𝑜1 is con-

nected to the third node 𝑜2 (labeled {𝑡2}) through the edge [𝑜1 , 𝑜2] (labeled �𝐴𝑘𝑝
1,2�),

then to the fourth node 𝑜3 (labeled {𝑡3}) through the edge [𝑜1, 𝑜3] (labeled �𝐴𝑘𝑝
1,3�),

and so on. Suppose also the third node 𝑜2 is connected to 𝑜3 through 𝐴𝑘𝑝
2,3, to 𝑜4

through 𝐴𝑘𝑝
2,4, with appropriate labels, and so on.

Example: Suppose predicate 𝒑 = 𝑝𝑢𝑡(𝑏𝑏𝑜𝑐𝑘: 𝑎, 𝑏𝑏𝑜𝑐𝑘: 𝑏, 𝑡𝑎𝑏𝑏𝑒: 𝑡) appears in the
fifth (𝑘 = 5) action-state pair of an observed sequence of actions. The nodes of this
predicate are �𝐴5𝑝𝑝𝑝�, {𝑎}, {𝑏}, and {𝑡}. The edges are �𝐴5𝑝𝑝𝑝 , 𝑎� , [𝑎, 𝑏], [𝑎, 𝑡], and

[𝑏, 𝑡], with respective labels �𝐴5𝑝𝑝𝑝
0,1 �, �𝐴5𝑝𝑝𝑝

1,2 �, �𝐴5𝑝𝑝𝑝
1,3 �, and �𝐴5𝑝𝑝𝑝

2,3 �. The predicate
encoding graph for 𝒑 is shown in Figure 1.

Definition: An action sequence graph of an action state sequence 𝕤 is a labeled di-
rected graph ℇ𝕤 = ⋃ �ℇ(𝒂)⋃ ℇ(𝒑)𝒑∈𝒔 �(𝒂,𝒔)∈𝕤 , a union of the predicate encoding graphs
of the action and state facts in 𝕤.

Figure 2 shows an example of a sample action state sequence and its corresponding
action sequence graph.

3.2 Retrieval

Case retrieval requires a similarity metric. Because we represent the input and the
stored plans as graphs, our metric uses graph matching; this can be formulated as the
task of computing the maximum common subgraph (MCS) of two graphs. Computing
the MCS between two or more graphs is an NP-Complete problem, restricting ap-
plicability to only small plan recognition problems. Alternatively, a plethora of ap-
proximate graph similarity measures exist. For example, similarity metrics that com-
pute graph degree sequences have been used successfully to match chemical struc-
tures (Raymond & Willett, 2002).

Figure 1: A predicate encoding graph corresponding to 𝒑 = 𝑝𝑢𝑡(𝑏𝑏𝑜𝑐𝑘: 𝑎, 𝑏𝑏𝑜𝑐𝑘: 𝑏, 𝑡𝑎𝑏𝑏𝑒: 𝑡)

Figure 2: An example action-state sequence 𝕤 and corresponding action sequence graph ℇ𝕤

In SET-PR, we use one of the degree sequence similarity metrics called Johnson’s
similarity metric (Johnson, 1985). This metric, denoted as sim𝑠𝑡𝑠, computes the simi-
larity between plans based on the approximate structural similarity of their graph
representations. Previously, we tried alternative degree sequence metrics and found
that Johnson’s metric performed the best (Vattam, Aha & Maynord, 2015).

Let 𝐺1 and 𝐺2 be the two action-sequence graphs. To compute their similarity, we
first separate the set of vertices in each graph into 𝑏 partitions by label type, and then
sort them in a non-increasing total order by degree (of a vertex 𝑣 is the number of
edges that touch 𝑣). Let 𝐿1𝑖 and 𝐿2𝑖 denote the sorted degree sequences of a partition 𝑖
in the action-sequence graphs 𝐺1 and 𝐺2, respectively. An upper bound on the number
of vertices 𝑉(𝐺1,𝐺2) and edges 𝐸(𝐺1,𝐺2) of the MCS of these two graphs can then be
computed as:

�mcs(𝐺1,𝐺2)� = 𝑉(𝐺1,𝐺2) + 𝐸(𝐺1,𝐺2), where

𝑉(𝐺1,𝐺2) = ∑ 𝑚𝑖𝑛��𝐿1𝑖 �, �𝐿2𝑖 ��𝑙
𝑖=1 , and

𝐸(𝐺1,𝐺2) = �∑ ∑
𝑚𝑖𝑛��𝐸�𝑣1

𝑖,𝑗��,�𝐸�𝑣2
𝑖,𝑗���

2

𝑚𝑖𝑛��𝐿1
𝑖 �,�𝐿2

𝑖 ��
𝑗=1

𝑙
𝑖=1 �,

where 𝑣1
𝑖,𝑗 denotes the 𝑗th vertex of the 𝐿1𝑖 sorted degree sequence, and 𝐸�𝑣1

𝑖,𝑗� de-
notes the set of edges connected to 𝑣1

𝑖 ,𝑗. Johnson’s similarity metric is given by:

𝑒𝑖𝑚𝑠𝑡𝑠(𝐺1,𝐺2) =
��mcs(𝐺1,𝐺2)��2

|𝐺1| ∙ |𝐺2|

Two plans that are similar in structure can differ drastically in semantics. For in-
stance, a plan to travel to a grocery store to buy milk might coincidentally be structur-
ally similar to a plan to travel to the airport to receive a visitor. To mitigate this issue,
we use a weighted combination of structural and semantic similarity, denoted as
sim𝑜𝑜𝑗, as our final similarity metric:

sim(𝐺1,𝐺2) = α sim𝑠𝑡𝑠(𝐺1,𝐺2) + (1 − α)sim𝑜𝑜𝑗(𝐺1,𝐺2),

where sim𝑜𝑜𝑗(𝐺1,𝐺2) =
𝑂𝕤∩𝑂𝜋𝑖
𝑂𝕤∪𝑂𝜋𝑖

 is the Jaccard coefficient of the set of (grounded) ob-

jects in 𝐺1 and 𝐺2, and 𝛼 (0 ≤ 𝛼 ≤ 1) governs the weights for sim𝑠𝑡𝑠 and sim𝑜𝑜𝑗.

SET-PR matches an input action-sequence graph 𝕤𝒒𝒒𝒒𝒒𝒒 with each case 𝑐 = (𝜋,𝑔) in
𝐶 using sim(𝕤𝒒𝒒𝒒𝒒𝒒, 𝑐.𝜋), and retrieves the top-ranked matching case (k=1 in k-NN).
This case’s plan is output as the recognized plan and its goal is output as the recog-
nized goal.

SET-PR keeps track of its most recent previous prediction and uses it to resolve
ambiguity if multiple cases are retrieved with nearly similar scores. In other words,
selection preference favors a case that maintains continuity in plan prediction. If none
of the cases in that set match the previous prediction, then one of them is selected
randomly.

3.3 Error Tolerance

The ability of SET-PR to tolerate input errors is a direct benefit of its representation
and retrieval mechanism. By adding state information to plan representation, SET-PR
reduces the overreliance on action information (which causes poor performance when
they are error-prone) and increases the total amount of information that is used for
recognition. SET-PR’s graph representation of plans permits inexact matching, trad-
ing off higher recall for lower precision. We claim that this tradeoff allows SET-PR to
generalize better in the presence of input errors compared to other approaches that
favor propositional representations and symbol matching, and test this in Section 4.

4 Empirical Evaluation

We empirically test the following claim: for the task of plan recognition, SET-PR’s
approach, which employs a graph-based representation and similarity metric, offers
more robustness to input errors compared to alternative CBPR approaches that use
propositional representation and symbol matching. We test this claim by subjecting
the approaches to increasing levels of input errors. At each level, we measure and
compare their plan recognition performance. We perform this experiment across three
different plan recognition datasets and note if similar performance trends emerge.

In the following sections we describe the approaches tested, performance metrics,
datasets used, methodology, the results and their analysis.

4.1 Compared CBPR Approaches

1. SET-PR: This approach uses action sequence graph representation and Johnson’s
similarity metric for performing plan recogntion as described above.

2. EDIT: This approach uses propositional representation and an ordered symbolic
similarity metric for performing plan recognition. It treats inputs and plans as
symbol sequences and computes their Edit distance (Levenshtein 1966).

3. JACC: This approach uses propositional representation and an unordered symbolic
similarity metric for performing plan recognition. It treats inputs and plans as a set
of action propositions (𝐴1 and 𝐴2) and computes their Jaccard distance (1 −
(𝐴1 ∩ 𝐴2 𝐴1 ∪ 𝐴2)⁄).

4. RAND: This is the baseline condition. It performs plan recognition by randomly
selecting a plan from the plan library in response to its inputs.

Table 1. Datasets used in this empirical study

4.2 Datasets Used

In this study we used three datasets (Table 1). We repeated our evaluation method
described below in all three datasets. Blocks World is a synthetic dataset that we gen-
erated using the HTN planner SHOP2 (Nau et al., 2003), which we modified to cap-
ture state information in the generated plans. Monroe (Blaylock & Allen, 2005) and
Linux (Blaylock & Allen, 2004) are two datasets that are commonly used to assess
plan recognizers. Monroe is also a synthetic dataset generated using SHOP2, while
Linux is a corpus of plans collected from human users performing assigned tasks.
Because the plans in these latter two datasets contain no state information, SET-PR’s
plans also contain only action information. This reduces the size of the encoding of
the plans in these two datasets.

4.3 Evaluation Method

For each dataset, we developed an error simulator that takes as input a plan (𝜋), an
error-type (𝑡), and an error-percentage (𝑝). It outputs 𝜋𝑒𝑠𝑠 , which contains 𝑝% errors
of type 𝑡. The values for 𝑡 include mislabeled (MLAB), missing (MSNG), extraneous
(EXTR), and mixed (MXD). For MLAB, a specified percentage of actions was ran-
domly chosen, and each was replaced with another action randomly chosen from the
domain. For MSNG, a percentage of actions was randomly chosen, and each was
replaced with an unidentified marker ‘*’. For EXTR, a percentage of randomly cho-
sen actions from the domain were introduced at random locations in the plan. For
MXD, a uniform distribution of all three types of errors was introduced.

For each dataset 𝐷, we obtained a set of datasets 𝐷𝑡,𝑝 that combine 𝑡 = {MLAB,
MSNG, EXTR, MXD} and 𝑝 = {0, 0.15, 0.3, 0.45, 0.6}. For example, 𝑀𝑜𝑛𝑒𝑜𝑒𝑀𝑀𝑀,0.6
is a Monroe version containing plans with 60% mixed error.

For each 𝐷𝑡,𝑝, we tested our compared conditions (SET-PR, EDIT, JACC, and
RAND) using five-fold cross-validation (with shuffle). That is, for each plan in the
test set, we incrementally queried the training set to predict a plan. For example, if a
test plan had four actions {𝑎1, 𝑎2, 𝑎3, 𝑎4}, the evaluator performed 4 queries {𝑎1},
{𝑎1, 𝑎2}, {𝑎1, 𝑎2, 𝑎3}, and {𝑎1, 𝑎2, 𝑎3, 𝑎4} to obtain a predicted plan after observing
each action in succession. For a prediction to be correct, the plan class of the predict-
ed plan must match the plan class of the test plan.

Table 2. A sample convergence matrix

For each compared condition for each 𝐷𝑡,𝑝, the results of the cross validation was
tabulated in a convergence matrix (example in Table 2). The rows in matrix are plan
indices and columns are action indices. After observing the 𝑗𝑡ℎ action of the 𝑖𝑡ℎ plan
in the test set, cellij registers (1) the predicted value (the goal class), and (2) a Boolean
value indicating a correct or incorrect prediction. We maintain two additional col-
umns, total number of actions (#acts) per row and correct predictions (#correct) per
row.

From the convergence matrix, we derive a confusion matrix (Table 3) by counting
the instances where the predicted plan class agrees or disagrees with the actual class.

4.4 Performance Metrics

We defined the following four plan recognition performance metrics from the conver-
gence matrix depicted in Table 2:

Percent convergence: Convergence indicates whether the final prediction in each
row was correct. For each condition, the percentage of True values is computed.

Convergence point: If a prediction converged, the convergence point (CP) is the
point in the input that the recognizer starts to output only the correct prediction. A
smaller value for this metric indicates a better performance. For each condition, we
also compute the average convergence point.

r-Accuracy: We can compute row-wise prediction accuracy as the ratio of the total
number of correct predictions in a row versus the total number of actions observed in
that row (#correct/#acts). We compute r-Accuracy as the average of this value for
each test plan. It has often been referred to as “precision” (e.g., Blaylock & Allen
2006) in plan recognition literature, which differs from the traditional meaning of
precision in the general classification literature. Table 3 displays the traditionally-
defined precision and recall values from the confusion matrix.

c-Accuracy: We calculate column-wise prediction accuracy as the ratio of the total
number of or correct predictions in a column versus its total number of plans (#correct
in col/#plans in col). c-Accuracy is the average of these values.

From the confusion matrix depicted in Table 3, we define a final performance met-
ric, F1-Score, which is the harmonic mean of average precision and recall.

4.5 Results

Figure 3 shows the plots for percent convergence and convergence point of SET-PR,
EDIT, JACC, and RAND at varying levels of input errors of type MXD (mixed error)

Table 3. Confusion matrix

for the three datasets. These are mean values averaged over five-fold cross validation.
Similarly, Figure 4 shows the plots for mean r-Accuracy and c-Accuracy, and Figure
5 shows plots for the mean F1-Score. Due to space restrictions, we do not show the
plots and other significance test results for other error types. However, we note that
the trends observed in MXD hold for other error conditions as well. We highlight
MXD because it contains a uniform distribution of the three kinds of errors (we chose
uniform distribution because we currently lack domain-specific error models).

 % Convergence Convergence point

B
L
O
C
K
S

M
O
N
R
O
E

L
I
N
U
X

4.6 Analysis

At 0% error level, the plots in Figures 3, 4 and 5 indicate the following. (1) For
Blocks: with the exception of one metric, EDIT and SET-PR perform comparably, but
JACC performs poorly, closer to RAND. (2) For Monroe: with the exception of one
metric, all three perform comparably. (3) For Linux: SET-PR shows performance
advantage in 3 out of 5 metrics, while EDIT and JACC perform comparably with each

Figure 3. Percent Convergence and Convergence-point vs. Error level for the 3 da-
tasets

other. Overall, for 0% error, in majority of the experiments, SET-PR’s performance is
comparable to EDIT, JACC or both.

 r-Accuracy c-Accuracy

B
L
O
C
K
S

M
O
N
R
O
E

L
I
N
U
X

At 15% error level, we see small to negligible performance declines for SET-PR, but
more declines for EDIT and JACC. Finally, at higher levels of error, we see moderate
declines in performance for SET-PR, but steep declines for EDIT and JACC. This
trend can be observed across datasets and across different error types in a majority of
experiments.

To assess the impact of the two independent factors (CBPR approach and error
level) on the value of a performance metric, we compared the means of the perfor-
mance metric values across these two factors. For each dataset and for each error
type, we subjected this two factor data to a two-way ANOVA test to measure the
statistical significance of the outcomes of the comparison, amounting to a total of 60
tests. In all 60 tests, there was a statistically significant effect observed for both fac-
tors as well as for their interaction (p < 0.05 for all tests; for error level, F(4,59)
ranged between 650 and 2229; for CBPR approach, F(3,59) ranged between 1042 and
17654; and their interaction factor, F(12,59) ranged between 100 and 409).

Figure 4. Mean r-Accuracy and c-Accuracy vs. Error level for the 3 datasets

From these results we can conclude that SET-PR has a significantly higher toler-
ance for the three kinds of input errors compared to EDIT and JACC although the
latter two can perform similarly to or outperform SET-PR in the 0% error condition.

BLOCKS MONROE

LINUX

5 Discussion

In Section 3.3 we argued that the superior performance of SET-PR under imperfect
observability can be attributed to two factors: (1) the content of the plans, which in-
cludes action and state information, and (2) the graph representation of the plans,
which permits inexact matching. Our evaluation lends support to (2) because only
SET-PR uses graph representations. Regarding (1), in our earlier pilot studies with
Blocks world (Vattam, Aha, & Floyd 2015), we compared SET-PR with and without
state information, keeping all else constant. There, we found preliminary evidence to
support (1), but our current investigation does not focus on (1) because no state in-
formation is included in SET-PR for the Monroe and Linux plan libraries.

One of the limitations of our study is that we do not compare SET-PR with other
state-of-the-art plan recognizers. In the future, we plan to obtain and run these exper-
iments with other well-known plan recognizers.

Given that graph matching is generally considered a hard problem, what can we
say about the computational efficiency of SET-PR’s matching process? Using its
degree sequence metric, others showed that the similarity between two graphs can be
computed in 𝑂(𝑛 ∙ 𝑏𝑜𝑔 𝑛) time, where 𝑛 = 𝑚𝑎𝑥𝑖��𝐿1𝑖 �, �𝐿2𝑖 �� (Raymond & Willett,
2002).

Figure 5: Mean F1-Score vs. Error level for the 3 datasets

Without efficient indexing techniques, plan retrieval time scales linearly with the
size of SET-PR’s library 𝐶. This can be prohibitively expensive for online plan
recognition. Thus, we use Plan Projection Clustering (PPC), a method to increase the
plan retrieval speed of SET-PR (Maynord, Vattam, & Aha 2015). PPC is a domain-
general approach for organizing SET-PR’s plans in a hierarchy. It employs a metric 𝑑
(e.g., Johnson’s similarity metric) that measures distances among plans. PPC com-
putes 𝑑(𝑝1, 𝑝2) for each pair of plans 𝑝1, 𝑝2 ∈ 𝐶 to produce a distance matrix 𝑀. PPC
then projects 𝑀 into 𝑁-dimensional Euclidean space by applying multi-dimensional
scaling (Kruskal, 1964). All cases are placed into a single group constituting the top
level of a hierarchy. We then recursively apply a clustering algorithm 𝑚 to these cas-
es until the desired depth of the hierarchy, 𝑘, is reached. Hyper-parameters 𝑑, 𝑁, 𝑚,
and 𝑘 can be tuned for optimal performance.

PPC processes a query 𝑞 by recursively matching it down the hierarchy. At each
level, 𝑑 is used to determine the distance between 𝑞 and the case 𝑐 closest to each
candidate cluster center. At each step, 𝑞 is matched to a cluster for which this distance
is smallest. Once a leaf is reached, 𝑞’s nearest neighbor is retrieved.

Our pilot study (Maynord, Vattam, & Aha 2015) indicated that PPC can reduce re-
trieval time by up to 72% while sacrificing only a small amount in retrieval accuracy
(approximately 4%), because queries are partial (rather than complete) plans.

6 Conclusions and Future Work

We described SET-PR, a case-based plan recognition algorithm that represents plans
as action sequence graphs. Unlike most prior algorithms, we designed SET-PR to be
tolerant of input errors in the observed actions (i.e., missing, mislabeled, or extra ac-
tion labels). We use Johnson’s (1985) similarity metric for plan retrieval in SET-PR
because it is an approximation of the maximal common subgraph function for match-
ing graphs. In our empirical studies on plan recognition tasks involving three data
sets, which we modified by adding input errors, we compared the performance of
SET-PR with alternative approaches that use propositional representation and similar-
ity functions for plan retrieval. We found that SET-PR’s use of a graph representation
for plans contributed to its superior performance when error rates are high. This com-
plements earlier work (Vattam, Aha, & Floyd 2015) that showed the incorporation of
state information in its plan representation is another contributing factor.

In our future work, we will compare the performance of SET-PR versus other
state-of-the-art plan recognition algorithms. We also plan to investigate more sophis-
ticated graph similarity functions (e.g., graph kernels) and compare them versus SET-
PR’s current similarity function. Current plan recognizers, including SET-PR, assume
that the observed actor’s plans remains static during plan recognition. We will relax
this assumption and extend SET-PR to tolerate dynamics changes to an actor’s plans.
Finally, we plan to integrate SET-PR with sensory perceptual systems on simulated
and real robotic platforms so that we can study its performance on the ground in real
time.

Acknowledgements

Thanks to OSD ASD (R&E) for sponsoring this research. Swaroop Vattam performed
this work while an NRC post-doctoral research associate at NRL. Thanks also to the
reviewers for their comments. The views and opinions contained in this paper are
those of the authors and should not be interpreted as representing the official views or
policies of NRL or OSD.

References

Bauer, M. (1994). Integrating probabilistic reasoning into plan recognition. In
Proceedings of the Eleventh European Conference on Artificial Intelligence (pp.
620-624). Amsterdam, The Netherlands: Wiley & Sons.

Blaylock, N. & Allen, J. (2004). Statistical goal parameter recognition. Proceedings
of the Fourteenth International Conference on Automated Planning and
Scheduling (pp 297-304). Whistler, BC, Canada.

Blaylock, N., & Allen, J. (2005). Generating artificial corpora for plan recognition.
User Modeling (pp. 179-188). Berlin, Germany: Springer.

Blaylock, N., & Allen, J. (2006). Hierarchical instantiated goal recognition. In G.
Kaminka, D. Pynadath, & C. Geib (Eds.) Modeling Others from Observations:
Papers from the AAAI Workshop (Technical Report WS-06-13). Boston, MA:
AAAI Press.

Charniak, E., & Goldman, R.P. (1993). A Bayesian model of plan recognition.
Artificial Intelligence, 64(1), 53-79.

Cox, M.T., & Kerkez, B. (2006). Case-based plan recognition with novel input.
Control and intelligent systems, 34(2), 96-104.

Duong, T. V., Bui, H.H., Phung, D.Q. & Venkatesh, S. (2005). Activity recognition
and abnormality detection with the switching hidden semi-Markov model.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (pp. 838–845). San Diego, CA: IEEE Press.

Geib, C. W. & Goldman, R.P. (2009). A probabilistic plan recognition algorithm
based on plan tree grammars. Artificial Intelligence, 173(11), 1101–1132.

Johnson, M. (1985). Relating metrics, lines and variables defined on graphs to
problems in medicinal chemistry. New York: Wiley.

Kautz, H., & Allen, J. F. (1986). Generalized plan recognition. Proceedings of the
Fifth National Conference on Artificial Intelligence (pp. 32–37). Philadelphia, PA:
AAAI Press.

Levenshtein, V.I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8), 707-710.

Maynord, M., Vattam, S., & Aha, D.W. (2015). Increasing the runtime speed of case-
based plan recognition. To appear in Proceedings of the Twenty-Eighth Florida
Artificial Intelligence Research Society Conference. Hollywood, FL: AAAI Press.

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F.
(2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence
Research, 20, 379-404.

Pynadath, D. V. & Wellman, M. P. (1995). Accounting for context in plan recognition
with application to traffic monitoring. Proceedings of Uncertainty in Artificial
Intelligence (pp. 472–481). Montreal, Quebec: Morgan Kaufmann.

Ramirez, M., & Geffner, H. (2010). Probabilistic plan recognition using off-the-shelf
classical planners. In Proceedings of the Conference of the Association for the
Advancement of Artificial Intelligence. Atlanta, GA: AAAI Press.

Ramirez, M., & Geffner, H. (2011). Goal recognition over POMDPs: Inferring the
intention of a POMDP agent. Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (pp. 2009-2014). Barcelona, Spain:
AAAI Press.

Raymond, J. W., & Willett, P. (2002). Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. Journal of Computer-Aided
Molecular Design, 16, 521–533.

Sánchez-Ruiz, A. A., & Ontañón, S. (2014). Least common subsumer trees for plan
retrieval. Proceedings of the Twenty-Second International Conference on Case-
Based Reasoning (pp. 405-419). Cork, Ireland: Springer.

Serina, I. (2010). Kernel functions for case-based planning. Artificial Intelligence,
174(16), 1369-1406.

Tecuci, D., & Porter, B.W. (2009). Memory based goal schema recognition. In
Proceedings of the Twenty-Second International Florida Artificial Intelligence
Research Society Conference. Sanibel Island, FL: AAAI Press.

van Beek, P. (1996). An investigation of probabilistic interpretations of heuristics in
plan recognition. Proceedings of the Fifth International Conference on User
Modeling (pp. 113-120).

Vattam, S., Aha, D.W., & Floyd, M. (2015). Error tolerant plan recognition: An
empirical investigation. To appear in Proceedings of the Twenty-Eighth Florida
Artificial Intelligence Research Society Conference. Hollywood, FL: AAAI Press.

Vattam, S.S., Aha, D.W., & Floyd, M. (2014). Case-based plan recognition using
action sequence graphs. Proceedings of the Twenty-Second International
Conference on Case-Based Reasoning (pp. 495-510). Cork, Ireland: Springer.

	1 Introduction
	2 Related Research
	3 SET-PR
	3.1 Representation
	3.1.1 Action state sequences. Each case’s plan 𝑐.𝜋 is modeled as an action state sequence 𝕤=,,,𝒂-𝟎.,,𝒔-𝟎..,…,,,𝒂-𝒏.,,𝒔-𝒏..., where each action ,𝒂-𝒊. is a ground operator in the planning domain, and ,𝒔-𝒊. is a ground state obtained by ex...
	3.1.2 Action Sequence Graphs. An action sequence graph is a graphical representation of an action state sequence, which is propositional. This graph preserves the topology of the sequence it encodes (including the order of the propositions and their a...

	3.2 Retrieval
	3.3 Error Tolerance

	4 Empirical Evaluation
	4.1 Compared CBPR Approaches
	4.2 Datasets Used
	4.3 Evaluation Method
	4.4 Performance Metrics
	4.5 Results
	4.6 Analysis

	5 Discussion
	6 Conclusions and Future Work
	Acknowledgements
	References

